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Heart Rate parameters as indicators for workloac

Workload and HR parameters

* increased mental workload and growing levels of physical activity are an increase in

Heart Rate (HR) and decrease in Heart Rate Variability (HRV, Mulder, 1992; De Waard & Brookhuis,
1991)

* Higher mental workload reflects in HRV parameters when sitting, standing, cycling and
walking (sun et al., 2012)

Potential of Wearable Devices

* HR measures of different wearable devices (e.g., Mio Alpha, Microsoft Band, Fitbit Charge
HR) correlate highly with the criterion measure and with each other, even when people
walk or run (stahl, An, Dinkel, Noble, & Lee, 2016)

e wearable devices proved satisfying HRV measurements for differentiation between high
and low demanding cognitive tasks (Barber, Carter, Harris, & Reinerman-Jones, 2017)

 HRV parameters of wearables are too inaccurate for identifying increased mental workload
(Reinerman-Jones, Harris & Watson, 2017)

—>H1: HR increases and HRV parameter decrease when mental demand is increased
—>H2: Higher physical demand should reflect in higher HR and lower HRV
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Participants (N = 32)

e 31 (18 female) usable data sets
e 25 years old (SD = 5.5)

e 87% were right-handed

Design

e 2 (mental workload) x 4 (activity) factorial within-subject design
e Mental workload: no additional task vs. arithmetic task (Meinel, 2013)
e Physical activity: sit vs. stand vs. step vs. cycle

L A F &
5 ¢ &
e DV: HR parameters (HR, IBI, SDNN, RMSSD, pNN50, LF, HF, LF/HF ratio)
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Methods N

Apparatus and material
HR measurement

e SUEmpathy (SUE),

e Microsoft Band 2 (MB2),

Activity
e Step board

e Roller fix frame

LT

e Metronome (Yixiang, 2015)

Questionnaires

Dutabase consection - - e : Stream Log Logging wtervat 300w (123 worne riece @D On

* NASA TLX (Hart & Staveland, 1988), — e

* Socio-demographic questionnaire
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Procedure

* 90-120 min

e Socio-demographic questionnaire, disqualification criteria, position devices
* Instructions via LabView, start of data and video recording

e Sequence of activities varied using Latin square

Activity +
Arithmetic
Task

Re-
covery

Activity
(Baseline)
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Results — low accuracy of MB2 measuremen

SUEmMpathy100 (sUE1-4.36j Scientific; SUESS Medizin-Technik Aue, 2009)

e Kubios (Version 3.0.2; Tarvainen, Niskanen, Lipponen, Ranta-Aho, & Karjalainen, 2014)

Outlier Analysis (Grubbs, 1969)
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Results — hypotheses partly confirmed
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Results — other HR parameters and subjective:

* Main effect for physical workload for all parameters and devices, but...
e often no difference between cycling and stepping
e less significant pairwise comparisons for MB2

e Opposite direction of mental workload effect for many other parameters

e Higher mental workload was connected with higher values of SDNN,
RMSSD (only MB2), LF and HF

* Higher (physical) workload reflected in - 100

higher NASA-TLX scores %80

(overall: F(1.99, 59.71) = 18.67, p = .000, n =.384 *;'? 60

(physical: F(2.00, 60.13) = 82.72, p = .000, r]p =.734) o 20

. g o
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e No significant correlations between Condition

SUbjeCtIVE workload and HR paramEterS M Overall score ® Mental demand M Physical demand
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Summary of results and implications

e Surprisingly low accuracy of MB2 data, inconsistent to earlier findings (Stahl et al.,
2016)

* real-time data assessment using the Microsoft SDK is only developed for reliable
measurements when resting

e even in the less active conditions reliability was not as high as in other studies
(Barber et al., 2017)

e Hypotheses confirmed for physical workload, only HR and IBl measures of
stationary device could support mental workload hypothesis

e Reverse effect of mental workload on HR parameters due to arithmetic task?
(Schubert, 2009)

- Used wearable device with rather low potential for a fine-grained monitoring of
physical and mental load at work

- Future research might concentrate on identifying rather long-term changes that
indicate stress
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Thank you for your attention!

Any questions?

Franziska Schmalful}
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